REPORT DOCUMENTATION PAGE T 0183

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
NOVEMBER 2013 Journal Article (Preprint) Oct 2012 — Sep 2013
4, TITLE AND SUBTITLE 5a. CONTRACT NUMBER

FA8750-11-2-0274
FAULT ANALYSIS-BASED LOGIC ENCRYPTION (PREPRINT)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62788F
6. AUTHOR(S) 5d. PROJECT NUMBER

T2HW
Jeyavijayan Rajendran (NYU-POLY), Huan Zhang (NYU-POLY), Chi
Zhang (NYU-POLY), Garrett S. Rose (AFRL), Youngok Pino (USC-ISI), | & TASK NUMBER PO

Ozgur Sinanoglu (NYU), Ramesh Karri (NYU-POLY)

5f. WORK UNIT NUMBER

LY

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Polytechnic Institute of NYU REPORT NUMBER
6 Metrotech Center
Brooklyn, NY 11201-3840 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory/Information Directorate AFRL/RI
Rome Research Site/RITA
525 Brooks Road 11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Rome NY 13441-4505 AFRL-RI-RS-TP-2013-063

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited. PA# 88ABW-2012-6072
Cleared Date: 19 NOV 2012

13. SUPPLEMENTARY NOTES

© 2013 IEEE. IEEE Transactions on Computers; IEEE Computer Society Digital Library, IEEE Computer Society.

ISSN: 1530-1591. One or more of the authors is a U.S. Government employee working, within the scope of their
Government job; therefore, the U.S. Government is joint owner of the work and has the right to copy, distribute, and use
the work. All other rights are reserved by the copyright owner.

14, ABSTRACT

Globalization of the integrated circuit (IC) design industry is making it easy for rogue elements in the supply chain to
pirate ICs, overbuild ICs, and insert hardware trojans. Due to supply chain attacks, the IC industry is losing
approximately $4 billion annually. One way to protect ICs from these attacks is to encrypt the design by inserting
additional gates such that correct outputs are produced only when specific inputs are applied to these gates. The state-
of-the-art logic encryption technique inserts gates randomly into the design but does not necessarily ensure that wrong
keys corrupt the outputs. Our technique ensures that wrong keys corrupt the outputs. We relate logic encryption to fault
propagation analysis in IC testing and develop a fault analysis-based logic encryption technique. This technique
achieves 50% Hamming distance between the correct and wrong outputs (ideal case) when a wrong key is applied.
Furthermore, this 50% Hamming distance target is achieved using a smaller number of additional gates when compared
to random logic encryption.

15. SUBJECT TERMS
Hardware Trojan, Reverse Engineering, Logic Reconfiguration, Logic Obfuscation, Logic Encryption

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES GARRET S ROSE
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
U U U uu 15 N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Fault Analysis-based Logic Encryption

Jeyavijayan Rajendran, Student Member, IEEE, Huan Zhang, Student Member, IEEE, Chi Zhang,
Garrett S. Rose, Member, IEEE, Youngok Pino, Senior Member, IEEE, Ozgur Sinanoglu, Member, IEEE,
Ramesh Karri, Senior Member, IEEE

Abstract—Globalization of the integrated circuit (IC) design industry is making it easy for rogue elements in the supply chain to pirate ICs,
overbuild ICs, and insert hardware trojans. Due to supply chain attacks, the IC industry is losing approximately $4 billion annually. One way
to protect ICs from these attacks is to encrypt the design by inserting additional gates such that correct outputs are produced only when
specific inputs are applied to these gates. The state-of-the-art logic encryption technique inserts gates randomly into the design but does not
necessarily ensure that wrong keys corrupt the outputs. Our technique ensures that wrong keys corrupt the outputs. We relate logic
encryption to fault propagation analysis in IC testing and develop a fault analysis-based logic encryption technique. This technique enables a
designer to controllably corrupt the outputs. Specifically, to maximize the ambiguity for an attacker, this technique targets 50% Hamming
distance between the correct and wrong outputs (ideal case) when a wrong key is applied. Furthermore, this 50% Hamming distance target
is achieved using a smaller number of additional gates when compared to random logic encryption.

1 INTRODUCTION

1.1 Motivation

D UE to the ever increasing complexity of constructing
and/or maintaining a foundry with advanced fabrication

capabilities, many semiconductor companies are becom-
ing fabless. Such fabless companies design integrated circuits
(IC) and send them to an advanced foundry, which is usually
off-shore, for manufacturing. Also, the criticality of time-to-
market has forced companies to buy several IC intellectual
property (IP) blocks to use them in their systems-on-chip. The
buyers and sellers of these IP blocks are distributed world-
wide.

Globalization of the IC design industry has led to several
new kinds of attacks on hardware. An attacker, anywhere in
the design flow, can reverse engineer the functionality of an
IC/1IP [1, 2]. He/she can then steal and claim ownership of the
IP [3]. An untrusted IC fabrication company may also over-
build ICs and sell them illegally. Finally, rogue elements in
foundries may insert malicious circuits into the design without
the designer’s knowledge [4]. Due to such attacks, the semi-
conductor industry loses $4 billion annually [1, 2]. Such at-
tacks have led IP and IC designers to re-evaluate trust in
hardware [4].

While the IC design flow spans many countries, not all
countries have strict laws against intellectual property theft.
As reported in [5], only a few countries such as USA and Ja-
pan have strict laws to protect IC designs against intellectual
property theft. Thus, every IC/IP designer bears an additional
responsibility to protect his/her design. If a designer is able to
conceal the functionality of an IC while it passes through the
different, potentially untrustworthy phases of the design flow,
these attacks can be thwarted [6, 7]. For this purpose, re-

o Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, and Ramesh Karri are
with the Electrical and Computer Engineering Department Polytechnic In-
stitute of New York Univeristy, Brooklyn, NY, 11209. E-mail: {jrajen01,
hzhang10, czhang10}@students.poly.edu, rkarri@poly.edu

o Garrett S Rose is with the Trusted Systems Branch, Air Force Research
Laboratories, Rome, NY, 13441. E-mail: Garrett.Rose.1@us.af.mil

o Youngok Pino is wtih the Information Sciences Institute, Arlington, VA,
22209. E-mail:ypino@isi.edu.

o Ozgur Sinanogly is with the New York University, Abu Dhabi, UAE.
E-mail: 0s22@nyu.edu

searchers have proposed a technique called logic encryption.

1.2 Logic Encryption

Logic encryption! hides the functionality and the imple-
mentation of a design by inserting some additional gates
called key-gates into the original design. In order for the design
to exhibit its correct functionality (produce correct outputs),
the valid key has to be supplied to the encrypted design. Upon
applying a wrong key, the encrypted design will exhibit a
wrong functionality (produce wrong outputs).

Logic encryption techniques can thwart an untrusted
foundry from illegally copying, reverse engineering, overpro-
ducing the IC design [3,5-8,11], and Trojan insertion [12]. As
shown in Fig. 1, the IP provider and the designer are trusted.
The foundry is not trustworthy or there is a rogue element in
the foundry. The designer encrypts the modules using the
proposed technique, synthesizes them wusing trustworthy
computer-aided design tools, and sends the generated layout
masks to the untrustworthy foundry. The key-inputs of the
key-gates are connected to the data lines of a tamper-proof
memory. When the designer sends the encrypted design to the
foundry, he does not load the secret key into this memory as it
can be recovered by an attacker in the foundry.

The foundry manufactures the IC and returns them to the
designer. The designer then loads the secret key into the tam-
per-proof memory and makes the ICs functional. To prevent a
user from reading out the secret key from the memory, the
designer removes read/write access to this memory by blow-
ing out the fuses in the read/write circuit. Furthermore, to
prevent an attacker from reading-out the contents of the
memory, it is designed to be tamper-proof. The designer or a
trusted third party performs functional validation and manu-
facturing testing on this functional IC. Once they pass these
tests, the functional ICs are packaged and sold.

Logic encryption of a hardware design does not mean encrypting the
design file by a cryptographic algorithm, and rather it means encrypting
a design’s functionality. Obfuscation of a module hides only its function-
ality but it does not prevent black-box usage [25]. Logic encryption pre-
vents this black box usage in addition. Hence, we use the term “encryp-
tion” and not “obfuscation.”

mailto:rkarri@poly.edu

Trusted design regimeC
|

Layout
design generation
Origina Encrypted @
netlist . netlist
(@)

IP owner L

Untrusted foundry

Fabrication

Trusted design Market

Packaging regime

Fig. 1. An IC design flow enhanced with logic encryption capabilities to thwart IC piracy [6,7]. Before sending the design to an untrusted found-
ry, the designer encrypts the design using logic encryption techniques. The foundry then manufactures this encrypted design. On receiving the
encrypted hardware, the IC designer activates it by applying the secret key and the IC is then sold in the market.

An attacker in the foundry has access to the layout. He can
copy the layout and overproduce the ICs (black-box usage).
Alternatively, he can reverse engineer the netlist from the lay-
out and reuse this netlist. Logic encryption seeks to prevent
these attacks by encrypting all or critical modules in a design.
Since the design is encrypted by the designer, the lack of the
secret keys by the foundry renders any copies or overpro-
duced ICs unusable. The attacker does not have access to good
functional input-output pairs (as the design has already been
encrypted previous to his access to the layout). Further, the
attacker does not have access to the RTL and the test vectors.
Unlike obfuscation techniques [3,5-8,11,12], logic encryption
protects against black-box usage and reverse engineering.

Though their application may differ depending up on the
target attack, any logic encryption technique should satisfy
two criteria [6,7,11,12]: (1) wrong outputs should be produced
on applying a wrong key, and (2) an attacker should not be
able to retrieve the secret key. On inserting a sufficient number
of key-gates, it becomes computationally infeasible for an at-
tacker to determine the secret key. In this work, we propose
fault analysis-based logic encryption to satisfy the first criteri-
on. The proposed technique enables the designer to controlla-
bly corrupt the outputs.

1.3 Contributions

Previously proposed logic encryption techniques insert
key-gates at random locations in a design [6,7] (Section 7 de-
scribes these techniques in detail). We show that when gates
are inserted randomly into the design, a wrong key may not
necessarily affect the output as its effects may not be propa-
gated to the outputs.

We then overcome this problem by relating it to an IC test-
ing scenario where the effect of a fault may not propagate to
the output. Furthermore, we also analyze how fault-analysis
techniques such as fault activation, fault propagation, and
fault masking can help perform stronger logic encryption.

We then leverage traditional IC testing algorithms to per-
form logic encryption. Our technique uses conventional fault
simulation techniques and tools such as HOPE [10] to guide
key-gate insertion and corrupt the output bits on applying a
wrong key.

We also use 2:1 multiplexers (MUXes) as key-gates. We use
fault-analysis techniques to guide MUX insertion.

The proposed techniques are analyzed by comparing the
Hamming distance between the outputs on applying the valid
key and a wrong key. The area, power, and delay overhead of
the proposed techniques are reported.

We acknowledge the scenario where a designer has a lim-
ited power, delay, or area overhead budget for logic encryp-
tion. Hence, we also analyze the ability to produce wrong out-
puts for a given power/delay/area overhead for different log-

Functional input

Key input—>| Encrypted module |

Output
Fig. 2. A system with an encrypted module.

ic encryption techniques.

Our work has the following unique features that differenti-
ate it from the previous work:
1.Analyzes logic encryption from IC testing perspective.
2.Uses test principles to relate invalid key-bits to corrupted
outputs.
3.The proposed fault-analysis approach is generic as it can be
applied to any logic encryption mechanism.

1.4 Organization

Section 2 describes a metric for logic encryption followed
by Section 3 with a motivating example explaining the necessi-
ty of the proposed work. Section 4 details the relationship be-
tween IC testing and logic encryption and proposes an algo-
rithm to insert XOR gates and MUXes for logic encryption.
Section 5 explains how to perform logic encryption when the
available resources (power, area, delay overheads) are con-
strained. Discussions on security and limitations of the pro-
posed technique are listed Section 6. Section 7 describes the
previous work on logic encryption. Section 8 concludes the

paper.

2. METRIC FOR LOGIC ENCRYPTION

The defender (designer) has to prevent his IP from being
copied by an attacker in the foundry and to prevent black-box
usage. The attacker does not know the secret key used for
encryption. Hence, he will apply a random key and in turn
expect the module to become functional (i.e. to produce cor-
rect outputs). If he is lucky and if the module indeed produces
correct outputs even when a random wrong key is applied,
then it benefits him. If he is not lucky, the attacker has to try
another key combination. Increasing the key-size increases the
effort of an attacker. Thus, the objective of the defender is to
make it harder for an attacker to retrieve the secret key. To
make this happen, the defender needs the encrypted design to
produce wrong outputs on applying a wrong key.

To formalize this, consider the system shown in Fig. 2. The
system has an M-bit input, N-bit output, and is encrypted with
K key bits. These bits are either logic “1” or ‘0". Let B = {0,1}. Let
x € BM be a functional input. Let y € BN be the correct output.
Let c € BXbe the correct key.

A module f encrypted with a key c should behave as fol-

3

MNo. of combinations that
an attacker has to considar (P)
2
=

1

o 10 20 30 40 5 &0 0TO
Number ol wreng cutp bits (Q)

Fig. 3. Number of combinations (P) that an attacker has to
explore when key size N =128 for different values of Q. A sys-
tem with an encrvoted module.

80 00 100 110 120 128

lows:

1.0n applying the correct key ¢, the module produces correct
outputs for all input patterns.

f(x,2) | =«=y V x €BM, y € BN

2.0n applying a wrong key, the module produces wrong out-
puts for all input patterns.

f(x,2) | 4=y V x €BM, z € BX, y'e BN, where y’ #y.

The Hamming distance between y” and y (HD(y,y’)) can
measure the difference between a correct output y and the
corresponding wrong output y". If HD(y,y’) = 0, then the out-
puts of the encrypted module are correct independent of the
applied key. Thus, the corresponding encryption is weak. If
HD(y,y’) = N, then the wrong outputs of the encrypted design
are still correlated to the original outputs, but this time in-
versely. The corresponding encryption is still weak and the
attacker can obtain the correct output by complementing the
output.

A defender has to encrypt the module such that an attacker,
with the knowledge of the publically available logic encryp-
tion objectives and algorithms, is not able to obtain the correct
outputs by applying a wrong key. This can be done by mini-
mizing the correlation between the corrupted and the original
outputs, and thus by maximizing the ambiguity for the attack-
er. If there are P output-bit combinations that an attacker is
forced to consider corresponding to every input combination,
then larger values of P imply greater ambiguity for the attack-
er. Obviously, a defender has to maximize P. This is analogous
to traditional cryptography, where increasing the key-size
increases the ambiguity for an attacker.

If Q-out-of-N output bits are wrong (i.e. HD(y,y’) = Q), then P
can be computed as {,).

If Q=0 (i.e. HD(y,y’) = 0), then P = 1; it benefits the attacker.
If Q=N (i.e. HD(y,y’) = 0), then P = 1; it benefits the attacker. P
is maximum when Q = N/2 (i.e. when HD(y,y’) = N/2).

Fig. 3 plots the number of combinations (P) that an attacker
has to consider for key size N (=128) for different values of Q.
P is maximum when Q = 64. Thus, the ambiguity for an at-
tacker will be maximum when HD(y,y’) = N/2. Hence, the
logic encryption technique should insert key-gates such that
the HD between the outputs on applying the correct key and
the wrong key (HD(y,y")) is N/2, i.e., 50% of the output bits
should be corrupted on applying a wrong key.

The proposed fault analysis approach enables a designer to
have control over the corruption effects of a logic encryption
technique. Certain designs may benefit from lower levels of
HD (by corrupting certain targeted parts of the design, or tar-
geted outputs). The proposed fault-analysis approach pro-
vides the control needed even in these situations, thus making

Fig. 4. A circuit encrypted with one XOR-gate (E1). The valid key is
K1=0. However, the design produces correct outputs (HD = 0) for 24
inputs patterns out of the 32 possible input patterns.

the necessary key gate insertions to achieve the targeted cor-
ruption.

3. MOTIVATIONAL EXAMPLE

Let us consider the combinational logic encryption tech-
nique proposed in [6,7]. In this technique, XOR/XNOR gates
are inserted at random locations. For instance, consider the
C17 circuit shown in Fig. 4 encrypted with one XOR-gate, E1.
This gate is inserted at the output of gate G2 which is part of
the original design.

The design will produce the correct output on applying the
correct key value, K1 = 0. On applying a wrong key (K1 = 1),
wrong outputs are produced. For example, on applying the
input pattern “01000”, a wrong output “00” is produced in-
stead of the correct output “10”.

Unfortunately, the design produces correct outputs for cer-
tain input patterns even on applying a wrong key. For exam-
ple, the input pattern “11100” produces the correct output
“11” even with a wrong key applied. In fact, this design pro-
duces a wrong output only for twelve input patterns out of the
possible 32 input patterns. In other words, the design produc-
es correct outputs for 75% (24) of the input patterns despite
applying the wrong key. Thus, this encryption procedure is
weak as it does not ensure wrong outputs are produced for
wrong keys, let alone 50% HD criterion. In this work, we pro-
pose a technique that will not only guarantee wrong outputs
for wrong keys but also meets 50% HD criterion.

4 FAULT ANALYSIS-BASED LOGIC ENCRYPTION

4.1 Logic encryption: a fault analysis perspective

We will now describe our technique to encrypt a design us-
ing key-gates (e.g.,, XOR/XNOR) in such a way that any wrong
key causes a wrong output. This is similar to the situation
where a circuit produces a wrong output when it has a fault
that has been excited and propagated to the outputs. The fol-
lowing observations relate logic encryption and fault analysis in
IC testing. We will use these observations to insert XOR/XNOR
gates.

Fault excitation: Application of a wrong key can be associat-
ed with the activation of a fault. For a wrong key, either a stuck-
at-0 (s-a-0) or stuck-at-1 (s-a-1) fault will get excited when
key-gates are used for encryption.

Consider the C17 circuit encrypted with one XOR gate (E1)
as shown in Fig. 5(b). Here, E1 is the key-gate. If a wrong key
(K1=1) is applied to the circuit, the value of net B is the negated
value of net A. This is the same as exciting an s-a-0 (when A=1)

or s-a-1 (when A=0) fault at the output of G7 as shown in Fig.
5(a). Please note that s-a-0 (s-a-1) fault activation can be attribut-
ed to the case where the net in question is supposed to yield a
value of 1 (0) during the functional mode of operation.

Fault propagation: Not all wrong keys can corrupt the out-
put as the effects of a wrong key may be blocked for some of the
input patterns. This is similar to the scenario where not all input
patterns can propagate the effect of a fault to the output [20].

Consider the circuit shown in Fig. 5(b). Let a wrong key (K1
=1) be applied to the circuit. For the input pattern 00000, an s-
a-0 fault gets excited at the output of E1 and propagates to both
outputs. The value at the output of E1 is 0 instead of 1, and the
output is 11 instead of 00.

For the input pattern 01110, even though the s-a-0 fault gets
excited at the output of E1, the output is 11, which is the cor-
rect output, as the fault effects have been blocked.

To propagate the effect of an excited fault, in our case the
wrong key, non-controlling values should be applied to the
other inputs of the gates that are on the propagation path of
the fault. Since not all input patterns guarantee the non-
controlling values on the fault propagation path, a wrong key
will not always corrupt the output.

Fault masking: Inserting a single key-gate and applying a
wrong key is equivalent to exciting a single stuck-at fault.
Likewise, inserting multiple key-gates and applying a wrong
key is equivalent to simultaneously exciting multiple stuck-at
faults.

However, when multiple faults are excited, they might
mask one another. Therefore, in logic encryption, when multi-
ple key-gates are inserted, the effect of one key-gate might
mask the effect of other key-gates.

Consider the encrypted circuit shown in Fig. 5(c). When the
key bits are 000, the correct functional output is 00 for the in-
put pattern 00000. However, if the key bits are 111 (wrong
key), the effect introduced by the XOR gate, E1, is masked by
the XOR gates E2 and E3. Consequently, the design produces
the correct output, 00. Similar to fault masking in IC testing,
the effect of one XOR gate is masked by the effect of the other
two XOR gates.

Even though the above scenario corresponds to masking
the effects of faults (key-gates), the typical scenario in IC test-
ing occurs when the effects of the same fault cancel due to re-
convergent fan-out structures. Fault masking occurs despite
the single fault assumption in IC testing.

Goal: Insert the key-gates such that a wrong key will affect
50% of the outputs for any input pattern. In terms of fault
simulation, this goal can be stated as finding a set of faults

2Techniques for bubble pushing are described in [24].

(b)

Fig. 5. Relation between logic encryption and IC testing — (a) fault excitation, (b) propagation, and (c) masking.

which together will affect 50% of the outputs for a wrong key
on applying an input pattern.

Challenge: Fault simulation tools rely on the assumption of
a single stuck-at fault model (only one fault can be present at
any time). Thus, existing commercial fault simulation tools can
be used to insert only one key-gate at a time. We overcome
this challenge by using a greedy iterative approach where key-
gates are inserted iteratively. In every iteration, the fault that
has the potential of propagating to a maximum number of
outputs dictates the location of the key-gate to be inserted. For
every iteration (except the first), the key-gates inserted at pre-
vious iterations are provided with random wrong keys there-
by emulating a multiple stuck-at fault scenario and accounting
for all previous key-gate insertions. An algorithm is presented
in the subsection 4.2.3 to perform this logic encryption.

4.2 Logic Encryption using XOR/XNOR gates

4.2.1 Fault Impact

To insert an XOR/XNOR as a key-gate, we need to deter-
mine the location in the circuit where, if a fault occurs, it can
affect most of the outputs for most of the input patterns. To
determine this location, we use fault impact defined by (1).
From a set of test patterns, we compute the number of patterns
that detect the s-a-0 fault (NoPo) at the output of a gate Gx and
the total number of output bits that get affected by that s-a-0
fault (NoOy). Similarly, we compute NoP; and NoO; for s-a-1
faults.

Fault Impact = (NoP, - NoO, + NoP, - NoO,) 1

By inserting an XOR/XNOR key-gate at the location with
the highest fault impact, an invalid key will likely have the
most impact on the outputs (i.e., the wrong outputs appear),
indirectly enabling the logic encryption technique to reach the
50% Hamming distance metric.

4.2.2 User-defined key

A designer can use either an XOR or XNOR gate as a key-
gate. However, an attacker can easily determine the value of
the key-bit. The value of the correct key-bit is ‘0" in case of
XOR gates and “1” in the case of XNOR gates. Hence, to de-
ceive an attacker, a designer can add an inverter at the input
or output of every key-gate. If the key-bit is ‘0", then the key-
gate structure can be either “XOR- gate’ or “XNOR-gate + in-
verter’. Similarly, if the key-bit is ‘1, then the key-gate struc-
ture can be either “XNOR-gate” or “XOR-gate + inverter’. The
synthesis tools can bubble push? the inverters added for logic
encryption. An attacker cannot identify which inverters are
part of the original design and which are inserted for logic
encryption.

Algorithm 1: Fault analysis-based insertion of
XOR/XNOR gates
Input: Netlist, KeySize, EncryptionKey
Output: Encrypted netlist
// Location Selection Phase
for i« 1 to KeySize do
foreach gate j € Netlist do
Compute FaultImpact;
end
Select the gate with the highest Faultimpact;
Insert XOR gate and update the Netlist;

Apply Test Patterns;
end
// Modification Phase
Generate R; //a random number
foreach biti € R do
if i==1 then
Insert an inverter at the o/p of corresponding key-
gate;
end
end

GateType = EncryptionKey @ R;
foreach biti € R do

if i ==1 then
Replace the XOR key-gate with an XNOR key-gate;
end
end

4.2.3 Algorithm to insert XOR/XNORs

Algorithm 1 greedily selects the best ‘N’ locations in a cir-
cuit to insert the XOR/XNOR key-gates. The algorithm has
two parts - location selection phase and modification phase. In
the location selection phase, the location with the highest fault
impact is calculated and an XOR gate is inserted at that loca-
tion. The algorithm considers the previously inserted XOR
gates in this calculation. This phase terminates on inserting as
many key-gates as that of the length of the user-defined en-
cryption key.

In the modification phase, the inserted XOR gates are either
retained or modified to XNOR gates. In addition, inverters are
added to the output of randomly selected XOR/XNOR gates
such that the user-defined encryption key correctly unlocks
the design.

Consider encrypting the C17 circuit, shown in Fig. 5(a), us-
ing the above algorithm. The NoPy, NoO,, NoP;, and NoO:
values for different nodes in the circuit, on applying 1000 ran-
dom input patterns, are listed in Table 1. In addition, the cor-
responding fault impact values calculated using (1) are also
listed. Based on the fault impact value, gate G7 is selected as
the best location to insert the key-gate, E1, for the first itera-
tion. Similarly, for the subsequent iterations the corresponding
XOR/XNOR gates are inserted using Algorithm 1.

4.3 Logic Encryption using Multiplexers

4.3.1 Key ldea

In MUX-based encryption, MUXes are inserted such that
one input of the MUX will be the true (original) wire in the
design. The second input to the MUXr, referred as the false
input, is another wire in the design. The select line of the MUX
is the associated key bit. On applying the correct key bit, the
true wire is selected, retaining the correct functionality of the
design; otherwise, the functionality is modified by selecting
the false wire.

TABLE 1
FAULT IMPACT VALUE OF DIFFERENT NODES IN C17 CIRCUIT
SHOWN IN FIG. 5 (A)

Node NoPo NoOo | NoP1 | NoO:1 Fault
Impact
G1 193 274 150 216 85282
G2 88 88 79 79 13985
G3 89 89 85 85 15146
G4 89 89 55 55 10946
G5 304 473 85 114 153482
G6 89 89 195 195 45946
G7 193 274 267 391 157279
G8 88 88 196 196 46160
11 150 216 193 274 85282
12 79 79 88 88 13985
13 85 85 89 89 15146
14 142 199 131 173 50921
15 112 147 85 114 26154
o1 196 196 304 304 130832
02 195 195 305 305 131050

The true wire can be connected to either the first or the sec-
ond input of the MUX. This enables the possibility of the cor-
rect key bit (select line) to be either 0 or 1. This leads to the
following dilemma for an attacker: is the true wire connected
to the first or the second input of the MUX? While logic en-
cryption using XOR/XNOR gates requires additional inverters
to create the dilemma, MUXes create that dilemma inherently.

Similar to XOR-based encryption, MUX-based encryption
can also be related to IC testing principles such as fault activa-
tion, fault propagation, and fault masking.

Fault activation: In MUXes, on applying a wrong key, the
false wire will be selected instead of the true wire. However,
the corruption effect will not happen when the two wires have
identical values, preventing excitation. This is different from
XOR-based encryption where fault activation is always guar-
anteed on applying a wrong key.

Consider the C17 circuit encrypted with one MUX (E1) as
shown in Fig. 6. If a wrong key (K1=1) is applied, the value of
net Y is the false value of the wire F instead of the true value
of the wire T. For the input pattern 1X110, the values on T and
F are both 0’s. On applying a wrong key, a s-a-0 fault is excited
at the output of G7. For the input pattern 1X100, the values on
T and F are 0 and 1, respectively. On applying a wrong key, a
s-a-1 fault is excited at the output of G7. However, for the in-

Fig. 6. A circuit encrypted with one multiplexer (E1). The false wire is
shown as a dotted line. The logic value in the true and the false wires
differ for 16 input patterns out of the total 32 input patterns.

Algorithm 2: Fault analysis-based insertion of
MUXes
Input: Netlist, KeySize, EncryptionKey
Output: Encrypted netlist
// Location Selection Phase
for i« 1 to KeySize do
foreach gate j € Netlist do
Compute FaultImpact;
end
Select the gate with the highest Faultlmpact as the true
wire;
ListOfFalseWires = @;
foreach wire j € Netlist and j# true wire do
if CombinationLoop(j,true wire) == False then
ListOfFalseWires=ListOfFalseWires U j;
Compute Contradiction metric;
end
end
Select the wire with the highest contradiction metric as
false wire
Insert MUX and update the Netlist;
Apply Test Patterns;
end
// Modification Phase
foreach bit i € EncryptionKey do
if i ==1 then
Connect frue and false wires to the second and first
inputs of the MUX;

end
end

put 1X110, the values on T and F are 0 and 0, respectively. On
applying a wrong key, no fault is excited at the output of G7.

The effects of fault-propagation and fault-masking princi-
ples on MUX-based encryption are similar to that of XOR-
based encryption. Hence, they are not repeated. However, the
effect of fault activation in these two techniques is different;
XOR-based encryption always guarantees fault activation
whereas MUXes do not.

4.3.2 Fault analysis-based insertion of MUXes

Similar to XOR-based encryption, MUXes can be inserted at
the output of gates whose fault metric is the highest. The out-
put of the selected gate will act as the true wire. However, a
designer needs to carefully select the false wire. This is because
fault excitation in MUX-based encryption will happen only if
the value on the true wire is different from the value on the
false wire.

While one can select the true and false wires based on the
number of input patterns for which the value at those wires
differ, such a method is computationally expensive. It requires
a designer to apply all possible input patterns or at the least it
requires O(N?) comparisons between the outputs of all the
gates, where N is the number of gates in the design. Hence, we
propose the following metric to select the false wire for MUX
key-gate insertion.

While the true wire is selected based on the fault-impact
metric, the false wire is selected based on another metric called
Contradiction Metric>. This metric aims at maximizing the
probabilities of having different values on the true and the
false wires and is given as:

Contradiction Metric = (Po,tme X Py farse) + (Pl,true X
l)O,ﬁallse)r (2)
where P e and Py,uye are the probabilities of getting a 0 and 1
on the true wire, respectively. Po s and Pt are the proba-

TABLE 2
CONTRADICTION METRIC VALUES OF DIFFERENT NODES IN
C17 CIRCUIT ON SELECTING G7 AS THE TRUE WIRE.

Po, false P1 false Contradiction
Node ! ’ metric
11 0.5 0.5 0.5
12 0.5 0.5 0.5
13 0.5 0.5 0.5
14 0.5 0.5 0.5
15 0.5 0.5 0.5
Gl 0.5 0.5 0.5
G2 0.5 0.5 0.5
G3 0.5 0.5 0.5
G4 0.5 0.5 0.5
G5 0.27 0.75 0.57
G6 0.75 0.25 0.4375
G8 0.625 0.375 0.46875

bilities of getting a 0 and 1 on the false wire, respectively.
Computing these probabilities requires O(N) computations for
a design with N gates [20].

In addition to this metric, the designer should also select
the false wire that will not result in a combinational loop with
the true wire. This is because combinational loops are rare in a
design except in the cases of flip-flops, latches, and ring oscil-
lators. If a designer selects the false wire such that it forms a
combinational loop with the true wire, an attacker can easily
determine that the “feedback” wire is the false wire. Conse-
quently, he can identify the corresponding key bit.

Consider the circuit shown in Fig. 6. Here, the output of
gate G7 is chosen as the true wire and the output of gate G6 is
chosen as the false wire. On an applying an input pattern
0X11X, the value of the true wire is ‘1’, while the value of the
false wire is ‘0’. In fact, the values of true and false wires differ
for 16 input patterns.

4.3.2 Algorithm to insert MUXes

Algorithm 2 greedily selects the best ‘N’ locations in a cir-
cuit to insert the MUXes. Similar to Algorithm 1, Algorithm 2
has two parts: the location selection phase and the modifica-
tion phase. In the location selection phase, the location with
the highest fault impact is calculated and it is selected as the
true wire. Then, a list of wires that do not form a combination-
al loop with the true wire is formed. The contradiction metric
of the wires within this list is calculated using (2). The gate
with the highest contradiction metric is selected as the false
wire. A MUX is then inserted at the true wire location. The
true and false wires are connected to the first and second input
of the MUX. In the modification phase, the input order of a
MUX is rearranged depending upon its key bit.

Consider encrypting C17, shown in Fig. 5(a), using the
above algorithm. The output of G7 is selected as the true wire
based on the fault impact values shown in Table 1. Table 2 lists
the contradiction metric of the wires that do not form a combi-
national loop with G7. The output of G5, which has the highest
contradiction metric, is selected as the false wire. A MUX is then
inserted at the output of G7. For the subsequent iterations the
corresponding MUXes are inserted using Algorithm 2. Note
that in Table 2, the best contradiction metric achieved for C17 is
0.57. This value is much less than the ideal value of .

3To reduce delay overhead, one can constrain the algorithm to select the
true and false wires from non-critical paths.

70 - C432 —— 5641 —— C5315 —=— C7552 g C5315 —=— C7552 4
5510 5838 55378 59234 —= 55378 59234 —=
60 - 1 i . "~ .
z z R A e
: : '
B B
fa] fa]
@ @
= £
T T
' 0 I . . ' . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
MNumber of key-gates MNumber of key-gates

&0 ar FPU divider —a—
LSU R'W Slore buffer
FPU input —s— Inst. fatch queus
lar -
S0 pss=sssscsssssnsssssssnsnssssssnnnnnasssnnnnnnnnnnn 4

Hamming Distance (%)
Hamming Distance (%)

o L L L L L

Number of key-gales Number of key-gales
©) (d)
Fig. 7. Hamming distance between the outputs of designs on applying the correct key and a random wrong key: (a) Random insertion of
XORs in ISCAS designs [6,7,11], (b) fault analysis-based insertion of XORs in ISCAS designs, (c) random insertion of XORs in OpenSPARC
[6,7,11], and (d) fault analysis-based insertion of XORs in OpenSPARC units.

70 - G432 —— 5641 —— C5315 —=— C7552 g 60 G432 —— 5641 —— C5315 —=— C7552

5510 5838 55378 59234 —= I 5510 5838 55378 59234 —=— |
—-— or] —-— S0 r
£ £
8 § wf
= =
a a
@ o 30
= =
T T
s 0 . L L s L L
0 40 60 80 100 120 0 20 40 60 80 100 120
MNumber of key-gates MNumber of key-gates
(@) (b)
&0 Decoder —— FPU divider —a— &0 Decoder —— FPU divider —a—
LSU R'W Store buffer LSU R'W Store buffer
FPUinput —— Inst. fetch queue FPUinput —— Inst. fetch queua
Excp. lar Thread switch —= Excp. lar Thread switch —=

R e 4 R e R 4
g g
g 40 g 40
g g
E E
§ 20 et g "" o § 20

10 f‘N_\'J e] 10

E‘:ﬁk _"_'_ e
0 = . " . 0
i} 20 40 B0 1] 100 120 i}
Number of key-gales Number of key-gales

© (d)
Fig. 8. Hamming distance between the outputs of designs on applying the correct key and a random invalid key: (a) Random insertion of
MUXes in ISCAS designs, (b) fault analysis-based insertion of MUXes in ISCAS designs, (c) random insertion of MUXes in OpenSPARC
units, and (d) fault analysis-based insertion of MUXes in OpenSPARC units.

TABLE 3
THE BEST HAMMING DISTANCE ACHIEVED (CLOSE TO 50% MARK) AND THE NUMBER OF KEY-GATES REQUIRED TO ACHIEVE THAT DIS-
TANCE FOR DIFFERENT LOGIC ENCRYPTION TECHNIQUES

Logic Encryption C432 5510 5641 5838 S5378 C5315 | C7552 | S9234

Random-XOR[6,7,11] | 50/110 | 39/67 | 37/104 | 55/28 | 29/128 | 27/124 | 20/126 | 14/118

FA-XOR 50/16 | 50742 | 50/29 | 50/2 | 50/106 | 48/109 | 50/55 | 50/39

Random-MUX 43/112 | 50/49 | 30/126 | 50/58 | 27/128 | 14/116 | 13/107 | 11/111

FA-MUX 50/9 50/46 | 50/46 | 50/26 | 50/110 | 43/109 | 38/102 | 43/92
Logic Encryption Decoder | LSUR/W | FPU In | Excp. Handler | FPU Div. | Store buffer | Inst. Fetch queue | Thread switch
Random-XOR[6,7,11] | 25/113 | 21/128 | 29/125 | 15/124 26/127 | 20/124 14/127 12/126
FA-XOR 49/117 | 46/128 | 41/100 | 44/125 44/124 | 46/127 39/126 38/125
Random-MUX 16/128 | 22/128 | 22/126 | 8/127 12/127 | 12/125 8/127 6/125
FA-MUX 49/119 | 35/124 | 48/117 | 39/127 44/124 | 43/127 33/117 36/126

including sequential designs as it takes fault masking effects
4.4 Results

4.4.1 Experimental setup

The effectiveness of the proposed technique is analyzed us-
ing ISCAS-85 combinational and ISCAS-89 sequential bench-
marks. We analyzed the performance of the logic encryption
techniques on OpenSPARC T1 Processors [25]. In case of pro-
cessors, not all the modules need to be encrypted. Since the
designer's valuable IP is typically in the controllers, one can
encrypt only the controllers. A side benefit of encrypting con-
trollers is that they are usually small (<1%) [3]. Consequently,
the overhead due to encrypting the controllers will be negligi-
ble at the system level.

We used the HOPE fault simulation tool [10] to calculate
the fault impact of each gate. We applied 1000 random input
patterns to a netlist and observed the true outputs. We set the
maximum key size as 128 bits. We then calculated the fault
impact for all possible faults in the circuit. We applied valid
and random wrong keys to an encrypted netlist and deter-
mined the HD between the corresponding outputs*. The area,
power, and delay overhead were obtained using Cadence RTL
Compiler.

4.4.2 Hamming distance analysis

The fault analysis based approach is compared with the
random insertion approach [6,7] and the corresponding results
are shown in Fig. 7 and Fig. 8. Let us analyze the performance
of the encryption gates when they use XOR/XNOR gates (Fig.
7). Fig. 7(a) and Fig. 7(c) show the results of random insertion
of XOR/XNOR gates in ISCAS and OpenSPARC designs, re-
spectively. The results of fault analysis-based insertion of
XOR/XNOR gates in ISCAS and OpenSPARC designs are
shown in Fig. 7(b) and Fig. 7(d), respectively.

When the XOR/XNOR gates are randomly inserted (Fig.
7(a) and Fig. 7(c)), 50% HD is not achieved. Fault masking is
the main reason for this poor performance. The effects of
wrong keys are blocked for most of the input patterns as dis-
cussed in Section 4. However, fault analysis based insertion
(Fig. 7(b) and Fig. 7(d)), achieves 50% HD for all benchmarks
except for C5315, C7552, and OpenSPARC controllers. The
number of outputs in benchmarks is very high (>100) and
hence it is hard to achieve 50% HD. However, the fault analy-
sis based approach performs well in all the other benchmarks

“4In case of sequential designs, we not only corrupt the outputs but also
the FSM state bits. Since the state values are stored in the flip-flops, we
considered each flip-flop as a pseudo output to evaluate the HD.

into account.

The slope of the lines in Fig. 7 and Fig. 8 indicates the per-
formance of the random and the fault analysis based inser-
tions. If the line is steeper, 50% HD can be achieved with a
smaller number of additional key-gates; hence power, area,
and performance overhead will be smaller. Fault analysis
based logic encryption has a smaller overhead than the ran-
dom insertion as it uses a smaller number of additional gates
to achieve the target HD.

In fault analysis based logic encryption, once a design
achieves 50% HD, its HD value does not deviate more on in-
serting more gates. Hence, one can increase the key size with-
out deviating from the 50% HD mark.

Let us analyze the performance of MUX-based encryption.
Fig. 8(a) and Fig. 8(c) show the results of random insertion of
MUXes in ISCAS and OpenSPARC designs, respectively. The
results of fault analysis-based insertion of MUXes in ISCAS
and OpenSPARC designs are shown in Fig. 8(b) and Fig. 8(d),
respectively. In MUX-based encryption (Fig. 8), the fault is not
always excited as it requires the logic value on the false wire to
be different from that on the true wire. This is the main reason
why MUX-based encryption is not able to achieve 50% HD.
However, fault-analysis-based insertion (Fig. 8(b) and 8(d)) of
MUXes still yields a better HD than random insertion of
MUXes (Fig. 8(a) and Fig. 8(c)). Unfortunately, a higher num-
ber of MUXes are required than are XOR gates to achieve the
50% HD mark.

Table 3 compares the best HD (the one that is close to 50%)
and the number of key-gates required to achieve that HD be-
tween the random and fault analysis based logic encryptions.
It can be seen that, in the case of XOR gates, on average, fault
analysis based logic encryption achieves the 50% HD value
with a key size that is four times less than that of random in-
sertion. In the MUX based approach, on average, fault analysis
based logic encryption achieves a HD value which is close to
the 50% mark, while the random insertion technique achieves
only 25% HD. This is because fault analysis based logic en-
cryption identifies more effective locations to insert the gates
than the random insertion based logic encryption. The per-
formance of the XOR- and MUX-based insertions differ be-
cause XOR/XNOR gates always guarantee fault activations
whereas MUX-based insertion cannot guarantee fault activa-
tion.

4.4.3 Power, Area, and Delay Overhead

Fig. 9 shows the power, delay, and area overhead of the
benchmarks that are encrypted with the number of key-gates
listed in Table 3 using random insertion [6,7,11] and the pro-
posed fault-analysis based insertion.

In all cases shown, the following three trends are observed.
First, the random insertion of key-gates (XORs and MUXes)
takes more overhead to achieve their highest HD. Specifically,
the fault analysis-based insertion of key-gates takes much less
overhead when compared to their random insertion counter-
parts.

Second, the overhead of the MUX-based method is more
than that of the XOR-based method irrespective of the encryp-
tion technique. There are two reasons for this. The first is, as
mentioned before, the MUX-based encryption technique takes
more key-gates to achieve the target HD than the XOR-based
encryption technique because of non-guaranteed fault activa-
tion. The second reason is the standard cell implementation of
MUX in the 45nm library uses NAND gate-based implementa-
tion of MUXes. This type of implementation consumes more
power, increases delay and occupies more area. The power,
area and delay overhead of MUXes would have been better if
the standard cell library had a transmission gate-based MUX.

Finally, the overhead is very high for smaller designs

(<2000 gates) such as C432, S510, S641, and for some Open-
SPARC units. This is because even a mere 30 additional XOR
gates required for logic encryption is on the order of the total
number of gates used to construct these small circuits. Con-
versely, in case of large designs (>3000 gates), the overhead for
fault analysis-based techniques (both XOR and MUX) is less
than 5%. This highlights that the fault analysis-based encryp-
tion is highly feasible and does not cause much overhead es-
pecially for larger designs. Furthermore, since we are encrypt-
ing only the controllers, which occupy only a tiny part (1%
[3]), the overhead will be negligible at system level.

5 RESOURCE-CONSTRAINED LOGIC ENCRYPTION

In certain scenarios, a designer can only offer a limited
power, area, or delay overhead for logic encryption. Hence, it
is necessary to identify the security offered in relation to sub-
sequent power, area, and delay overheads.

In constrained insertion, instead of inserting a pre-defined
number of key-gates, the designer inserts key-gates until the
encrypted design exceeds the allowed power, area, or delay
limit. A designer can insert a key-gate at a location and calcu-
late the power/area/delay overhead due to that key-gate. If
the overhead is acceptable, he can insert the key-gate at that

g :2 | Random-XOR [6,7,11] === FA-XOR Random-MUX t——1 FA-MUX =]
E— a5 | 58 %@D 5% gﬁ?ﬁ‘ 510,572 gﬁ 35 |
0
5 30 ‘ ; : i s il
S K SN 5
S s 0 / AN N _
g ot B B B 2 B —
g ' g | B B B S| B
sl E : | S B B A -
C432 s510 s641 s838 C5315 s5378 s9234 Decoder LSU FPU Excp. FPU Store Inst. fetch Thread
RW Input Handler Divider buffer queue switch
@)
® Random-XOR[6.7,11] E== FA-XOR Random-MUX ——= FA-MUX /=
or 137 156 108 403 116 205 172 277 _ 73 248 72 45 390 60 284 70 175 |
a5 | 68 ﬁaa 71 glg 239 sﬂs 35 @_ 291 116 208 120 447 ' 768 "ad0 68369 47 “3d7 " 84 49 84 587 i
&
o 30] 3 <) < } } q
3 & AN L P B B
. BB A
| . e B R
) 5 AL B B . aill Bl B
s641 5838 c5315 s5378 ©7552 59234 Decoder Lsu FPU FPU Store Inst. fetch Thread
RW Input Divider buffer queue switch
(b)
45
Random-XOR [6,7,11] Ex= FA-XOR mzzzm Random-MUX ——1 FA-MUX =
4o 40 102 78 53 96 99 11g 133 248 116 205 111 198 98 179 106172 107 172 _ 96 136 96 123 |
; a5 |- 85 168 ﬁﬁ 218 %‘\i‘_l 160 184 @ﬁizﬂ) 116 208 118 208 Q@EQ_\ 107 175 107 170 96 136 96 123 |
230t }) } <) v < } v A
: : A A A
£ a5 i SO B B B B R B B 1
: LR B R B
2 ol o SOl RN B BN L B B B |
10 5 20 5 B BN BN R B B
I S S B BN B B B B
5 i O B B B B B B B
s641 5838 c5315 55378 €7552 59234 Decoder ESNVU IFPUl HEX%KI). [)FPéJ l?l(f)fre Inst. fetch Thr_(tear?
npu landier vider utier queue SWilCl
©)

Fig. 9. Overhead for different logic encryption techniques for a key size that results in a HD close to 50% (a) Power overhead, (b) Delay

overhead, and (c) Area overhead.

60 -

Random-XOR [6,7,11] FA-XOR Random-MUX —= FA-MUX ==
50 LI 5 128 key-gates are inserted in each design
@ B F —
5 i 7
g a0l 2 s 7 / 1
2 1.
? 30 . 46 % g]
: : .
g ool 2 R |
g 20 1 11 :.:é ?
3 K]
10 ; i 1 4 Eiiﬁ ; :g 1
[]
0 8 4 :0:/ !
0
c432 s510 c5315 c7552 59234 Decoder ESIWU hEx(éxl). d'FPdU k?t?fre Inst. fetch Thr_elzarnli
andier vider utier queue swilcl
@)
60
Random-XOR [6,7,11] FA-XOR oz Random-MUX ——= FA-MUX /=3
50 - 7 " 57
3 128
§ 4o 18 8 7 7 |
k-] el 25
230r 2 i é .
E bl 4] o
£ 4 i Kt 24 '2 128 3
T 20 1 k » o / N |
T £ g‘/ 128
2 . , ;:: ::= % 128 128
10 - ’ £ 22 o J
. i 14 5
2 i 2]
2 % b o 3
0 o[] X 50 5
c432 s510 s641 5838 c5315 s5378 c7552 59234 o dI_:Pdu k?Icf)fre Inst. feich Thr_(learnli
andler ivider uffer queue switc]
(b)
&0 Random-XOR [6,7,11] === FA-XOR Random-MUX —— FA-MUX ==
7 119
50 - 8 M 2 58 51
r 2 / M 128
% 40 - ' % s 95 128
= 15| z 7 7
£ %
: e . o |
£ 20+ o E:i% gg - 119 4 E:g ::ié é
® e % = A k- 26
g F B : E 5
10} 2 :0:% BB 1 5 L S
o ol | Bhae| KA i e £k i i

w
£
0

o]
@
©

s5378

c7552 9234

Decoder Lsu
RW

FPU
input

FPU
divider

Thread
switch

Inst. feich
queue

Store
divider

Excp.
handler

location. If not, he can skip that location. Such a method will
be computationally expensive. Hence, we perform the re-
source-constrained logic encryption in the following way.

In every iteration, after inserting a key-gate, the designer
calculates the overhead for encryption. If this overhead is
within the allowable limit, then he inserts an additional key-
gate and repeats the same process until the limit is exceeded.
To perform this analysis, we follow the same insertion algo-
rithms listed in Sections 4 and 5, and we stop the insertion
once the overhead exceeds a pre-defined limit. As an instance,
we chose a limit of 5%.

Fig. 10 shows the HD achieved and the number of key
gates inserted for different insertion techniques when a de-
signer is constrained to spend only 5% power, delay, and area
overhead, respectively for logic encryption. One can make the
following three observations.

First, for a given overhead, the HD achieved by the fault
analysis-based method is typically higher than that of the ran-
dom method. This is because the fault analysis-based insertion
technique accounts for fault activation, propagation, and
masking effects. In case of delay-constrained insertion (Fig.
10(b)), inserting a MUX increases the delay by more than 5%
and thus, no MUX was inserted for some of the designs.

Second, the HD achieved with XOR/XNOR gates as key-

©)
Fig. 10. Hamming distance achieved for different insertion mechanisms when the allowed overhead for logic encryption is 5%. (a) Power
constrained, (b) delay constrained, and (c) area constrained. The numbers on top of the bar shows the number of key-gates inserted.

10

gates is higher than with MUXes as key-gates because
XOR/XNOR gates always guarantee fault activation. In addi-
tion, since the power consumption, delay, and area of
XOR/XNOR gates are smaller than that of MUX, a designer is
able to insert a higher number of XOR/XNOR gates than
MUXes for a given budget.

Finally, in the case of large designs a designer is able to in-
sert more key-gates since the percentage overhead is propor-
tional to the size of the design. Thus, for such designs the in-
serted key-gates were enough to achieve the 50% HD mark
with the fault-analysis technique. On the other hand, in the
cases of random insertions, 50% HD was not guaranteed. This
shows that the power, delay or area overhead spent by a de-
signer on logic encryption would be ineffective if he follows
the random insertion technique. However, a designer can ef-
fectively reap the benefits of logic encryption on using a fault-
analysis based insertion technique.

6. DISCUSSION

6.1 Can we insert key-gates only at the outputs?

A designer can insert key-gates only at the outputs to ac-
count for fault activation, propagation, and masking. Howev-

140

120 - 7
|
;

.
25554
Fai

6%

100 |

V.
e

.

S
%!
3
SIS
e

60

5
%S
s

P
o

of key-gates

%
55

40

20

P

"‘WW
o
225
2%

Yot
oEeiels
ftoteds

22
2

R A
Solele!
2

LN
fode!

X
%

20

2%

Q00

q <

4

o
ndul Ndd BEGSESEE

FA-XOR

QB ®Bonono mwsd Le0®no®Ro il mw s d
Bhefbiakygb3figsy RERREEGRFLIZIZZS
aIRER °od L8 cEREg S8 Ca g

o§ Tggfa m§g19n2n
TEEE=53e TEEZ=5Ee

aglag gries

£ a 5] s 5

5 5

Fig. 11. Number of key-gates inserted at the outputs and inside the
designs for different fault analysis-based insertion techniques.

er, in such insertions a key-gate will affect only one output-bit.
The fault analysis-based insertion technique makes use of the
fan-out structures to identify the best location within the cir-
cuit such that multiple outputs are affected by a single key-
gate. Thus, each output-bit will not be directly correlated with
a key-bit. Consequently, an attacker cannot determine the key-
bit.

Fig, 11 shows the number of key-gates, which are required
to achieve 50% HD that are inserted at the outputs and inside
the design for different fault analysis-based insertion tech-
niques. One can observe that the number of key-gates required
to achieve 50% HD on using fault analysis-based insertion
method is less than the number of outputs in the design. For
example, consider the design C5315. This design has 123 out-
puts. However, fault analysis-based insertion of XOR/XNOR
gates requires only 109 XOR/XNOR gates. Similarly, fault
analysis-based insertion of MUXes requires only 109 gates. Let
us consider another design C7552. This design has 108 out-
puts. However, fault analysis-based insertion requires 55 and
102 key-gates for the XOR and MUX approaches, respectively.
This shows that a designer can find effective places inside the
circuit, not just at the outputs, to insert key-gates such that the
50% HD metric is achieved.

6.2 Security analysis

To undermine the security offered by logic encryption, an
attacker can perform the following attacks:

1.Brute-force attack: In this attack, an attacker tries all possible
key combinations until he finds the correct key. However, in-
creasing the key size will make it harder for an attacker to re-
trieve the secret key.

2.Correcting the wrong output bits: In this attack, an attacker
can correct the wrong output bits by inverting them. To per-
form this attack, he has to know which output bits are wrong.
The number of output-bit combinations that the attacker has
to consider for every input combination dictates the ambiguity
created for the attacker. This is analogous to traditional cryp-
tography, where the key size dictates the ambiguity for an
attacker. Table 4 shows the number of output combinations
that an attacker is forced to consider on an encrypted netlist
for different logic encryption techniques. It can be seen that
fault-analysis based logic encryption results in more ambigui-
ty for an attacker than random insertion.

3.Key-gate removal attack: The attacker can attempt to re-
move the key-gates from the encrypted netlist and replace
them randomly with a buffer or an inverter. Consider the fol-
lowing case from an attacker’s perspective. An “XOR-
gatet+inverter” is inserted into the design for a key-bit of value
“1". On seeing this XOR-gate connected to a key input, an at-
tacker will recognize that the XOR-gate is added for logic en-
cryption. However, on seeing the inverter, he might not know
whether it is part of the original design (resulting in correct
key-bit of value “0") or added for logic encryption (resulting in
correct key-bit of value “1"). Thus, this creates a dilemma to an
attacker. This dilemma is further exacerbated by the synthesis
tool as it also uses inverters (not for the purpose of logic en-
cryption) while synthesizing a design. In case of MUX-based
encryption, the attacker can try to connect the true wire with
the output. But, he does not know which wire is the true wire.

4. Retrieving good input-output pairs: An attacker can buy a
working IC from the market. Thereby, he will have access to
good input-output pairs of the IC. However, this does not un-
dermine the strength of the proposed logic encryption tech-
nique. This is because of the following reason. In the logic
encryption, the fault impact is calculated by considering not
only the primary inputs and outputs but also considering each
flip-flop is considered as a pseudo input and as pseudo out-
put. Thus, in the context of logic encryption “good input-

TABLE 4
NUMBER OF OUTPUT COMBINATIONS THAT AN ATTACKER IS FORCED TO CONSIDER ON AN ENCRYPTED NETLIST FOR VARIOUS TYPES OF

KEY-GATES AND LOGIC ENCRYPTION TECHNIQUES. (A)

ISCAS cIRCUITS AND (B) OPENSPARC CONTROLLERS

(@)
Logic encryption C432 S510 S641 5838 S5378 C5315 C7552 59234
Random-XOR [6,7,11] 35 1.7E+03 2.7E+11 8.2E+08 5.3E+58 2.5E+30 49E+22 | 6.7E+42
FA-XOR 35 1.7E+03 1.1E+12 1.2E+09 2.3E+67 7 4E+35 2.5E+31 | 9.1E+73
Random-MUX 35 1.7E+03 3.7E+10 1.2E+09 5.2E+56 1.8E+21 8.8E+17 | 9.5E+36
FA-MUX 35 1.7E+03 1.1E+12 1.2E+09 2.3E+67 2 AE+35 1.7E+30 | 9.1E+72
(b)
Logic encryption Decoder LSU FPU Excp. FPU Store Inst. Fetch Thread
R/W In Handler Div. buffer queue switch
Random-XOR][6,7,11] 1.1E+22 29E+44 | 3.0E+35 5.9E+32 2.5E+50 5.6E+34 6.4E+43 1.7E+41
FA-XOR 8.1E+26 7.7E+59 | 5.0E+39 5.4E+52 3.2E+60 1.7E+48 1.8E+72 9.6E+74
Random-MUX 7.8E+16 3.8E+45 | 8.8E+30 3.1E+21 1.1E+32 2.8E+25 2 4E+30 1.7E+25
FA-MUX 8.1E+26 1.9E+56 | 4.3E+40 2.7E+51 3.2E+60 5.9E+47 3.7E+68 7.3E+73

1"

output pairs” include: (1) primary input-primary output pairs,
(2) primary input-pseudo output pairs, (3) pseudo input-
primary output pairs, and (4) pseudo input-pseudo output
pairs. After manufacture-testing and validation, the designer
disables the scan test access port of the IC [28]. Disabling the
scan access port prevents the access to the flip-flops. Conse-
quently, an attacker cannot access the pseudo-inputs and
pseudo-outputs. Thus, an attacker on buying a functional IC
does not have access to primary input-pseudo output pairs,
pseudo input-primary output pairs, and pseudo input-pseudo
output pairs.

6.3 Logic Encryption and PUFs

The security of any logic encryption technique can be im-
proved by using Physical Unclonable Functions (PUFs) by
assigning unique unlocking keys to each instance of an IC
[6,7,11]. PUFs are circuits that exploit inherent physical disor-
ders due to process variations to produce a chip-dependent
output on applying an input. The technique works as follows:
The designer embeds a symmetric key cryptographic module
and a PUF circuit along with the encrypted module. Post-
fabrication, the designer applies an input to the PUF and ob-
tains an output. Simultaneously, the output of the PUF is fed
into the cryptographic module. This output is used as the key
for the cryptographic module. This key is burnt into the fuses
and thus remains non-volatile. Once the designer obtains the
output from the PUF, the PUF is no longer accessible (one can
use fuses to shut down the access).

The designer uses the output of the PUF as the key to cryp-
tographic module. He uses the secret key to unlock the en-
crypted module as the plaintext to the cryptographic algo-
rithm and computes the ciphertext. This ciphertext is then fed
into the target chip. Inside the target chip, the ciphertext is fed
into the cryptographic module which uses the PUF’s output as
the secret key. The output of the cryptographic module will
then be the secret key to unlock the encrypted design. This is
fed to unlock the encrypted module. Since the PUF’s output
will be different on different chips, the ciphertext of one chip
cannot be used to unlock the design in another chip.

6.4 Can alogic encryption technique produce wrong
outputs for only certain inputs?

If a module produces wrong outputs for a few input pat-
terns, an attacker can still use the module by excluding those
input patterns. For example, if a processor produces wrong
outputs for just 2-3 instructions, an attacker can recompile his
program by excluding those instructions from the instruction
set. Thus, as highlighted in [11], it becomes necessary to pro-
duce wrong outputs for many input patterns for a random,
wrong key.

In general, a designer cannot tune a logic encryption to
produce wrong outputs only for certain inputs by assuming
that the attacker will use only those inputs. This is because he
does not have access to the attacker’s input-set. Thus, a de-
fender has to perform logic encryption based on generic input
patterns.

6.5 Limitations

We generated random input patterns to calculate the fault
impact of a node in a design. Although this does not cover the
entire input space, it gives a designer a rough estimate of the

12

impact of the fault at that node. However, one can also devel-
op a systematic algorithm to calculate the fault impact rather
than applying random input patterns by using the proposed
fault metric as a basis.

Fault impact metric is only a heuristic and does not guaran-
tee one to achieve 50% HD. However, it enables to reach 50%
HD as can be seen in Fig. 7, Fig. 8 and Fig. 12. Unlike crypto-
graphic modules, the designs in the benchmark suite and in
Open SPARC processor do not have a regular structure. Thus,
one cannot guarantee 50% HD because of the fault masking
effects described in Section 4.1.

In this work, only one key-gate is inserted per iteration. Such
insertion may be computationally expensive for large designs.
This method took two hours to encrypt the C7552 circuit.
However, one can partition the circuit into multiple segments
and encrypt each of the segments individually to achieve the
global objective of 50% HD.

One can ensure that brute force effort is required to retrieve
the secret key by formally proving the capability of the logic
encryption technique. However, such a proof will be design
dependent. Generating such formal proofs for every design
may not be practical. The proposed techniques are design in-
dependent and increase the effort for an attacker.

7 RELATED WORK

Logic encryption techniques can be broadly classified into
two types—sequential and combinational. In sequential logic
encryption, additional logic (black) states are introduced in the
state transition graph [3, 11, 12]. The state transition graph is
modified in such a way that the design reaches a valid state
only on applying a correct sequence of key bits. If the key is
withdrawn, the design, once again, ends up in a black state.
However, the effectiveness of these methods in producing a
wrong output has not been demonstrated.

In combinational logic encryption, XOR/XNOR gates are
introduced to conceal the functionality of a design [6,7]. Usual-
ly, one of the inputs in these inserted gates serves as a ‘key
input” which is a newly added primary input. One can config-
ure these gates as buffers or inverters using these key inputs.

CLIP introduces process variation sensors into a circuit [5].
Post-fabrication, special test vectors are applied to these sen-
sors to determine the impact of process variation. Based on
this impact, the designer configures these sensors such that
correct outputs are produced. A wrong configuration results
in a wrong output. The advantage of this technique is that
every chip inherently has a unique decryption key. However,
the maximum HD between the outputs of the correct and
wrong configurations achieved by this technique is only 18%.

At the micro-architectural level, processor encryption uses
the logic encryption capabilities to selectively encrypt units of
a microprocessor [27], thereby enhancing the capabilities of a
Trojan detection technique to detect Trojans. It randomly in-
serts the key-gates into the design, i.e. it uses the algorithm
proposed in [6,7]. It dynamically loads and unloads the key to
make a unit to function at will. The proposed techniques can
aid processor encryption to insert key-gates within a micro-
processor unit such that an incorrect key results in an incorrect
output.

Apart from sequential and combinational elements,
memory elements are also inserted into the design [8]. The
circuit will function correctly only when these elements are
configured/programmed correctly. However, the introduction
of memory elements into the circuit will incur significant per-
formance overhead.

Techniques such as watermarking and passive metering are
also proposed to detect IC piracy. In watermarking tech-
niques, a designer embodies his/her signature into the design
[13]. During litigation, the designer can reveal the watermark
and claim ownership of the IC/IP. Watermarks are construct-
ed by adding additional states to the finite state machine of the
design, adding secret constraints during high-level [14], logi-
cal, or physical synthesis [15] steps.

In passive metering techniques, a unique device ID for
every IC is formed leveraging process variations [3]. Physical
Unclonable functions are leveraged to produce such IDs [17--
19]. If a user pirates an IC, he/she will be caught by tracking
the device ID. Unfortunately, both watermarking and passive
metering techniques can only detect piracy but not prevent it;
only logic encryption techniques can prevent IC piracy.

8 CONCLUSION

Fault analysis based logic encryption achieves 50% HD be-
tween the correct and the corresponding wrong outputs when
an invalid key is applied to the design. While we used only
one of the cryptographic criteria namely, HD, there are other
criteria such as Avalanche criterion, Strict Avalanche criterion,
and Bit independent criterion [20]. Cryptographically strong
designs (for instance, S-boxes, the primitives of Advance En-
cryption Standard [21]) have to satisfy all these criteria. Evalu-
ation of a logic design against these criteria is computationally
complex as it requires applying all possible input combina-
tions. Thus, these criterion cannot be directly applied to logic
design where applying all possible input patterns will be
computationally inhibitive. To overcome this problem, cryp-
tographic researchers have to develop new techniques to eval-
uate the security of logic encryption.

In this work, we took the average HD as the assessment cri-
terion. To overcome the problems of averaging, one can per-
form insertion by assigning weights based on the number of
inputs that affect the key. Since we have used a single fault
simulator, we developed an iterative algorithm to determine
the fault impact in the presence of fault masking. Logic en-
cryption can also be performed non-iteratively by using a fault
simulator that supports multiple stuck-at fault models.

9 ACKNOWLEDGMENT

The contractor acknowledges government support in the
publication of this paper. This material is based on work fund-
ed by AFRL under contract No. FA8750-11-2-0274. Received
and cleared for public release by AFRL on November 19, 2012,
case number 88ABW-2012-6072. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
AFRL or its contractors.

10 REFERENCES

[1] KPMG. (2006) Managing the risks of counterfeiting in the infor-
[Online].
www.agmaglobal.org/ press_events/press_docs/Counterfeit_White

mation technology.
Paper_Final.pdf

[2] SEMIL (2008) Innovation is at risk as semiconductor equipment and
materials industry loses up to $4 billion annually due to IP infringe-
ment. [Online]. www.semi.org/en/Press/P043775

[3] Y.M. Alkabani and F. Koushanfar, "Active hardware metering for
intellectual property protection and security," in Proc. of USENIX Se-
curity, pp. 291-306, 2007.

[4] Defense Science Board (DSB) study on High Performance Microchip
Supply. [Online].
http:/ /www.aoq.osd.mil/dsb/reports/ ADA435563.pdf

[5] W.P. Griffin, A. Raghunathan, and K. Roy, “CLIP: Circuit Level IC
Protection Through Direct Injection of Process Variations”, IEEE
Transactions on Very Large Scale Integration Systems, vol. 20, no. 5, pp.
791-803, 2012.

[6] J.A. Roy, F. Koushanfar, and I.L. Markov, "EPIC: Ending Piracy of
Integrated Circuits," in Proc. of Design, Automation and Test in Europe,
pp- 1069-1074, 2008.

[7] J.A. Roy, F. Koushanfar, L.L. Markov, "Ending Piracy of Integrated
Circuits," Computer, vol.43, no.10, pp.30-38, 2010.

[8] Baumgarten, A. Tyagi, and J. Zambreno, "Preventing IC Piracy Using
Reconfigurable Logic Barriers," IEEE Design & Test of Computers, vol.
27, no. 1, pp. 66-75, 2010.

[9] J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, “Security analysis of
logic obfuscation”, in the Proceedings of the Design Automation Confer-
ence, pp. 83-89, 2012.

[10] H.K. Lee and D.S. Ha, "HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits," IEEE Transactions on Comput-
er-Aided Design of Integrated Circuits and Systems, vol. 15, no. 9,
pp- 1048-1058, 1996.

[11] R.S. Chakraborty and S. Bhunia, "HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection," IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol.
28, no. 10, pp. 1493-1502, 2009.

[12] R.S. Chakraborty and S. Bhunia, "Security against hardware Trojan
through a novel application of design obfuscation," in Proc. of the
IEEE International Conference on Computer-Aided Design, pp.113-116,
2009

[13] A. B. Kahng, J. Lach, W.H. Mangione-Smith, S. Mantik, I.L. Markov,
M. Potkonjak, P. Tucker, H. Wang, G. Wolfe, "Watermarking tech-
niques for intellectual property protection," in Proc. of IEEE/ACM De-
sign Automation Conference, pp.776-781, 1998.

[14] F. Koushanfar, I. Hong, M. Potkonjak, "Behavioral Synthesis Tech-
niques for Intellectual Property Protection", ACM Transactions on De-
sign Automation of Electronic Systems, Vol. 10, No. 3, pp. 523-545, 2005.

[15] A. B. Kahng, S. Mantik, I.L. Markov, M. Potkonjak, P. Tucker, H.
Wang, G. Wolfe, "Robust IP Watermarking Methodologies for Physi-
cal Design", in the Proceedings of the Design Automation Conference, pp.
782-787,1998.

[16] Federal Information Processing Standards Publication 197. (2001)
Specification for the Advanced Encryption Standard (AES).

[17] G.E. Suh and S. Devadas, "Physical Unclonable Functions for Device
Authentication and Secret Key Generation," in Proc. of the IEEE/ACM
Design Automation Conference, pp. 9-14, 2007.

[18] J.W. Lee et al., "A technique to build a secret key in integrated circuits
for identification and authentication applications," in Proc of Symposi-
um on VLSI Circuits, pp. 176- 179, 2004.

http://www.semi.org/en/Press/P043775

[19] K. Lofstrom, W.R. Daasch, and D. Taylor, "IC identification circuit
using device mismatch," in IEEE International Solid-State Circuits Con-
ference, 2000, pp. 372-373.

[20] M. Bushnell and V. Agarwal, Essentials of Electronic Testing for

Digital, Memory, and Mixed-Signal VLSI Circuits. Boston: Kluwer

Academic Publishers, 2000.

[21] H.M. Heys and S.E. Tavares, "Avalanche characteristics of substitu-

tion-permutation encryption networks" IEEE Transactions on Comput-

ers, vol. 44, no. 9, pp. 1131-1139, 1995.

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in the

Proceedings of CRYPTO, pp. 388-397, 1999.

K. Tiri and I. Verbauwhede, “A logic level design methodology for a

(22]

[23]
secure DPA resistant ASIC or FPGA implementation,” in the Proc. of
Design Automation and Test in Europe, pp. 246-251, 2004.

[24] D.M.Harris and S.L. Harris, “Digital design and computer architec-

ture,” Morgan Kaufmann, 2013.

[25] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,

Amit Sahai, Salil Vadhan, and Ke Yang, “On the (im)possibility of

obfuscating programs”, Journal of ACM, vol.2 no.6, pp. 1-48, 2012.

“OpenSPARC T1 [Online].
http:/ /www.opensparc.net/opensparc-tl /index.html.

[2717. AK. Kanuparthi M. Zahran, SK. Adepalli,

G.Ormazabal, R. Karri, “Securing Processors Against Insider At-

[26] Sun Microsystems, Processor,"

Rajendran,

tacks: A Circuit-Microarchitecture Co-Design Approach,” IEEE De-
sign & Test Magazine, vol. 30, no. 2, pp. 35-44, 2013.

[28] ARM, “i.MX35 Applications Processors for Industrial and Consumer
Products,” http:/ /www.freescale.com/webapp/

sps/site/ prod_summary.jsp?code=1.MX357&fpsp=1&tab=Documen
tation_Tab

Jeyavijayan (JV) Rajendran is a fourth year PhD Candidate in the
Electrical and Computer Engineering Department at Polytechnic Institute
of New York University. His research interests include hardware security
and emerging technologies. He is a student member of IEEE and ACM.

Huan Zhang received the B.S and M.S degrees in computer engineer-
ing from the Polytechnic Institute of New York University, Brooklyn, NY, in
2011 and 2013, respectively. He is currently a researcher at a federally
funded research and development center.

Chi Zhang is a senior year undergraduate in the Electrical and Com-
puter Engineering Department at Polytechnic Institute of NYU. Chi’s re-
search interests are in hardware security and trust.

Garrett S. Rose received the B.S. degree in computer engineering
from Virginia Polytechnic Institute and State University (Virginia Tech),
Blacksburg, in 2001, and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Virginia, Charlottesville, in 2003 and 2006,
respectively. Currently, he is with the Air Force Research Laboratory,
Information Directorate, Rome, NY where his work is focused on nanoe-
lectronic computing research.

Youngok Pino is a computer scientist at Information Sciences Institute
(ISI) where her research is focused on secure hardware design for trust in
different platforms such as FPGAs and ASICs. She is a senior member in
IEEE and has severed on program committees for several conferences.
She received the B.S. degree in computer science from the City University
of New York, City College and the M.S and Ph.D degrees in Electrical
Engineering from Rensselaer Polytechnic Institute, Troy, NY.

Ozgur Sinanoglu received the Ph.D. degree in computer science and
engineering from the University of California at San Diego, San Diego, CA,
USA, in 2004. Currently, he is an Assisstant Professor at New York Uni-
versity, Abu Dhabi, United Arab Emirates. His main research interests
include the reliability and security of integrated circuits, mostly focusing on
design for testability and design for trust. Dr. Sinanoglu is the recipient of
the Best Paper Award of the VLSI Test Symposium, 2011.

14

Ramesh Karri is a Professor of Electrical and Computer Engineering
at Polytechnic Institute of New York University. He has a Ph.D. in Com-
puter Science and Engineering, from the University of California at San
Diego. His research interests include trustworthy ICs and processors; High
assurance nanoscale IC architectures and systems; VLS| Design and
Test; Interaction between security and reliability. He is the recipient of
NSF CAREER Award and Sir Alexander Von Humboldt Award.

http://www.opensparc.net/opensparc-t1/index.html
http://www.freescale.com/webapp/

	1 Introduction
	1.1 Motivation
	1.2 Logic Encryption
	1.3 Contributions
	1.4 Organization

	2. Metric for Logic Encryption
	3. Motivational Example
	4 Fault Analysis-based Logic Encryption
	4.1 Logic encryption: a fault analysis perspective
	4.2 Logic Encryption using XOR/XNOR gates
	4.2.1 Fault Impact
	4.2.2 User-defined key
	4.2.3 Algorithm to insert XOR/XNORs

	4.3 Logic Encryption using Multiplexers
	4.3.1 Key Idea
	4.3.2 Fault analysis-based insertion of MUXes
	4.3.2 Algorithm to insert MUXes

	4.4 Results
	4.4.1 Experimental setup
	4.4.2 Hamming distance analysis
	4.4.3 Power, Area, and Delay Overhead

	5 Resource-Constrained Logic Encryption
	6. Discussion
	6.1 Can we insert key-gates only at the outputs?
	6.2 Security analysis
	6.3 Logic Encryption and PUFs
	6.4 Can a logic encryption technique produce wrong outputs for only certain inputs?
	6.5 Limitations

	7 Related Work
	8 Conclusion
	9 Acknowledgment
	10 References

